Dropbox

Staff Data Engineer, Analytics Data Engineering

Dropbox

full-time

Posted on:

Location Type: Remote

Location: Canada

Visit company website

Explore more

AI Apply
Apply

Salary

💰 CA$204,000 - CA$276,000 per year

Job Level

About the role

  • Lead the design and implementation of shared, reusable data models, defining shared fact tables, conformed dimensions, and a semantic/metrics layer that serves as the single source of truth across analytics functions
  • Drive standardization of data engineering practices across ADE and functional analytics teams, including pipeline patterns, CI/CD workflows, naming conventions, and data modeling standards
  • Partner with Data Infrastructure to modernize orchestration, improve pipeline decomposition, and establish secure dev/test environments with production data access
  • Architect and implement a shift-left data governance strategy, working with upstream data producers to establish data contracts, SLOs, and code-enforced quality gates that catch issues before production
  • Collaborate with Data Science leads and Product Management to translate metric definitions into reliable, certified data pipelines that power executive dashboards, WBR reporting, and growth measurement
  • Reduce operational burden by improving pipeline granularity, observability, and failure recovery, establishing runbooks and alerting standards that make on-call sustainable
  • Evaluate and integrate AI-native tooling into the data development lifecycle, enabling conversational data exploration with guardrails and AI-assisted pipeline development

Requirements

  • BS degree in Computer Science or related technical field, or equivalent technical experience
  • 12+ years of experience in data engineering or analytics engineering with increasing scope and technical leadership
  • 12+ years of SQL experience, including complex analytical queries, window functions, and performance optimization at scale (Spark SQL)
  • 8+ years of Python development experience, including building and maintaining production data pipelines
  • Deep expertise in dimensional data modeling, schema design, and scalable data architecture, with hands-on experience building shared data models across multiple business domains
  • Strong experience with orchestration tools (Airflow strongly preferred) and dbt, including pipeline design, scheduling strategies, and failure recovery patterns
  • Demonstrated ability to drive cross-team technical alignment, establishing standards, influencing without authority, and working across Data Engineering, Data Science, Data Infrastructure, and Product Engineering boundaries.
Applicant Tracking System Keywords

Tip: use these terms in your resume and cover letter to boost ATS matches.

Hard Skills & Tools
data modelingSQLPythondimensional data modelingschema designdata architecturepipeline designperformance optimizationdata governanceAI-native tooling
Soft Skills
technical leadershipcross-team collaborationinfluencing without authoritystandardizationproblem-solvingcommunication