
Senior Data Engineer – Real-Time & Distributed Systems, GCP
Innodata Inc.
full-time
Posted on:
Location Type: Remote
Location: New Jersey • United States
Visit company websiteExplore more
Job Level
About the role
- Design, build, and optimize scalable data pipelines for batch and real-time processing
- Develop and maintain event-driven architectures for high-throughput systems
- Ensure data reliability, performance, and low-latency processing across distributed environments
- Collaborate with data scientists and application teams to enable analytics and AI use cases
- Implement best practices in performance tuning, monitoring, and cost optimization
Requirements
- Advanced proficiency in Python for backend and large-scale data processing
- Strong experience building and managing big data pipelines in production environments
- Hands-on expertise with workflow orchestration tools such as Airflow or Google Cloud Composer
- Proven experience in batch and streaming data processing using: Apache Spark Apache Beam (Dataflow)
- Experience designing and operating event-driven systems using Pub/Sub
- Strong understanding of distributed systems architecture and scalability patterns
- Experience managing globally distributed, low-latency datasets
- Hands-on experience with NoSQL databases and/or Google Cloud Spanner
- Strong knowledge of system reliability, fault tolerance, and performance optimization
Applicant Tracking System Keywords
Tip: use these terms in your resume and cover letter to boost ATS matches.
Hard Skills & Tools
Pythonbig data pipelinesbatch processingstreaming data processingApache SparkApache Beamevent-driven systemsNoSQL databasesGoogle Cloud Spannerperformance optimization